Co bychom měli požadovat od toho, kdo učí matematiku na 1. stupni školy?
PDF (English)

Jak citovat

Vinner, S. (2013). Co bychom měli požadovat od toho, kdo učí matematiku na 1. stupni školy?. Scientia in Educatione, 2(2), 3-21. https://doi.org/10.14712/18047106.49

Abstrakt

Článek je rozšířenou verzí plenární přednášky na konferenci SEMT 11 (Vinner, 2011). Jsou zde rozpracovány některé otázky, kterým se autor ve své přednášce z časových důvodů nemohl věnovat. Autor doporučuje, aby kromě znalostí matematiky potřebných pro výuku matematiky na 1. stupni základní školy byla dostatečná pozornost věnována také dalším aspektům práce učitele. Doporučuje, aby důvody pro zařazení matematiky jako povinného předmětu pro celou populaci, stejně jako základní cíle vzdělávání byly diskutovány s učiteli. Doporučuje také, aby z přípravy učitelů byla vyřazena témata, která jsou vně ZPD (Zone of Proximal Development – zóny nejbližšího vývoje).
https://doi.org/10.14712/18047106.49
PDF (English)

Reference

AUSUBELL, D. Educational Psychology: A Cognitive View. Holt, Rinehart and Winston, 1968.

BALL, D. B., HILL, H. C., BASS, H. Knowing mathematics for teaching. American Educator, Fall, 2005, 14–46.

BROUSSEAU, G., SARRAZY, B. Glossaire de quelques concepts de la theorie des situations didactiques en mathematiques. Bordeaux : DAEST, Universite Bordeaux. G, 2002

CHOPIN, M. P., NOVOTNÁ, J. Contribution of the theory of didactical situations to mathematics education, The Proceedings of the International Symposium on Elementary Math Teaching at Charles University (SEMT 11), Prague, August 21–26, 2001. Eds. Novotná, J., Moraová, H., 2011, 361–363.

CONFREY, J. Student voice in examining “Splitting” as an approach to ratio, proportion, and fractions. Proceedings of PME 19, Recife, Brazil. Vol. 1, 1995, 3–29.

COURANT, R., ROBINS, H. What is mathematics? New York : Oxford University Press, 1948.

DUDLEY, U. What is mathematics for? AMS Notices, May 2010, Vol. 57, (7), 608–613.

GARDNER, H. Multiple intelligences: The theory in practice. New York : Basic Books, 1993.

GOLEMAN, D. Emotional intelligence. Bantam Books, 1995.

GOULD, S. J. The Mismeasure of Man. W. W. Norton & CO Inc., 1981.

GUBERMAN, R. The relationship between the developmental level of arithmetic thinking of preservice teachers, and the ability expected from them in meaningful learning. Unpublished Ph.D. dissertation. Ben Gurion University of the Negev, Israel (Hebrew with an English abstract), 2007.

HERSH, R. What is mathematics, really? Vintage, 1998.

MOLIERE. The Would-be Gentleman. In: Five Plays, Translated by John Wood, the Penguin Classics, 1953. (p. 2 and further), 1670.

NCTM. Principles and Standards for School Mathematics. Reston, Virginia, 2000.

PANDISCIO, E. A., KNIGHT, K. C. An investigation into the van Hiele levels of understanding geometry of preservice mathematics teachers, Journal of Research in Education, 2011, 20 (1), 45–52.

PELED, I., BALACHEFF, N. Beyond realistic considerations: Modeling conceptions and controls in task examples with simple word problems. ZDM 43, 2011, 307–315.

SCHOENFELD, A. Mathematical problem solving. New York, NY : Academic Press, 1985.

TAPLIN, M. Teaching values through a problem solving approach. The INTERNET: A Compilation of Papers by Dr. Margaret Taplin, 2002, 72–88.

TIROSH, C. The ability of prospective teachers to prove or to refute arithmetic statements. Unpublished Ph.D. dissertation. Hebrew University of Jerusalem, Israel (Hebrew with an English abstract), 2002.

VINNER, S. The pseudo-conceptual and the pseudo-analytical thought processes in mathematical learning. Educational Studies in Mathematics 34, 1997, 97–129.

VINNER, S. From solving equations to the meaning of life: mathematics, rationality and values. ZDM 39, 2007, 183–189.

VINNER, S. Some missing dimensions in mathematics teacher education. In D. Tirosh, T. Wood (Eds), The International Handbook of Mathematics Teacher Education, Vol. 2: Tools and Processes in Mathematics Teacher Education, Sense Publisher, 2008, 305–320.

VINNER, S. The role of examples in the learning of mathematics and in everyday thought processes. ZDM 43, 2011, 247–256.

VINNER, S. What should we expect from somebody who teaches mathematics in elementary schools. The Proceedings of the International Symposium on Elementary Math Teaching at Charles University (SEMT 11), Prague, August 21–26, 2001. (Eds) Novotná, J., Moraová, H., 2011, 31–43.

VYGOTSKY, L. Thought and language (English translation). Cambridge, MA : MIT Press, 1986.

WITTMANN, E. C. Mathematics Education as a “Design Science”, Educational Studies in Mathematics 29, 1995, 355–374.

YAARI, M. Personal communication. 2005.