Enumerating All Possible Outcomes: An Analysis of Students’ Work
PDF

How to Cite

Savard, A., & DeBlois, L. (2013). Enumerating All Possible Outcomes: An Analysis of Students’ Work. Scientia in Educatione, 4(1), 49-62. https://doi.org/10.14712/18047106.44

Abstract

A variety of contexts in the learning of probability could provide opportunities for students to reason under uncertainty. This kind of reasoning could support students to develop critical thinking practices. This paper presents a study on how children in a grade four classroom developed strategies about enumeration of combinatorics using critical thinking. A preservice teacher taught those students and the analysis of their work showed the procedures they used. Then, these results emerge from a secondary analysis. The results suggest that students need opportunities to develop increasingly sophisticated methods of reasoning probabilistically. This study also suggests that critical thinking is both necessary to develop these modes of reasoning and is developed through this work.
https://doi.org/10.14712/18047106.44
PDF

References

BAILIN, S., CASE, R., COOMBS, J. R., DANIELS, L. B. Conceptualizing Critical Thinking. Journal of Curriculum Studies, 31(3), 1999, 285–302.

BRIAND, J. Une expérience statistique et une premi`ere approche des lois du hasard au lycée par une confrontation avec une machine simple. Recherches en didactique des mathématiques, 25(2), 2005, 247–281.

BROUSSEAU, G. Theory of didactical situations in mathematics. New York : Springer, 1997.

BRUN, J., CONNE, F. Analyses didactiques de protocoles d’observation du déroulement de situations. Education et Recherches (3), 1990, 261–285.

BRUNER, J. The Process of Education. Cambridge : Harvard University Press, 1960.

BRUNER, J. Making Sense. The Child’s Construction of the World. London : Methuen, 1987.

CARON, F. Splendeurs et miseres de l’enseignement des probabilités au primaire. Paper presented at the Colloque du Groupe des didacticiens des mathématiques du Québec (GDM) 2002: Continuités et ruptures entre les mathématiques enseignées au primaire et au secondaire, Université du Québec a Trois-Rivieres, 2004.

DEBLOIS, L. 4 dizaines et 10 unités font 410, pourquoi? Trois-Rivi`eres: Editions Bande Didactique, 2001a.

DEBLOIS, L. Un mod`ele d’interprétation des activités cognitives pour des él`eves qui éprouvent des difficultés d’apprentissage en mathématiques. Actes du colloque “Constructivismes: usages et perspectives en éducation”, vol. 2 Cédérom), 2001b, 565–573.

DEBLOIS, L. Interpréter explicitement les productions des él`eves: une piste. . . Retrieved Éducation et francophonie, Volume XXXI (2), Document consulté le 16 juillet 2005, 2003. From http://www.acelf.ca/c/revue/revuehtml/31-2/08-deblois.html

DEBLOIS, L., Maheux, J.-F. When Things Don’t Go Exactly as Planned: Leveraging from Student Teachers’ Insights to Adapted Interventions and Professional Practice. Paper presented at the The 15 th International Commission of Mathematical Instruction, Aguas De Lindoia, Brésil, 2005.

DUVAL, R. Structure du raisonnement déductif et apprentissage de la démonstration. Educational Studies in Mathematics, 22, 1991, 233–261.

ENGLISH, L. D. Combinatorics and the Development of Children’s Combinatorial Reasoning. In G. A. Jones (Ed.), Exploring Probability in School: Challenges for Teaching and Learning (Vol. Mathematics Education Library, 2005, p. 121–141).

New York : Springer.

FISCHBEIN, E., Schnarch, D. The Evolution with Age of Probabilistic, Intuitively Based Misconceptions. Journal of Research in Mathematics Education, 28(1), 1997, 96–105.

GUILBERT, L. La pensée critique en science: présentation d’un mod`ele iconique en vue d’une définition opérationnelle. The journal of educational thought, 24(3), 1990, 195–218.

HAWKINS, A. S., KAPADIA, R. Children’s Conceptions of Probability — A Psychological and Pedagogical Review. Educational Studies in Mathematics, 15, 1984, 349–377.

JONES, G. A., THORNTON, C. A., LANGRALL, C. W., TARR, J. E. Understanding Students’ Probabilistic Reasoning Developing Mathematical Reasoning in Grades K-12 (Vol. 1999 Yearbook). Reston, Virginia : National Council of Teachers of Mathematics, 1999.

KONOLD, C. Understanding Student’s Beliefs about Probability. In E. V. Glasersfeld (Ed.), Radical Constructivism in Mathematics Education, p. 139–156, Dordrecht : Kluwer academic publishers, 1991.

LIPMAN, M. Thinking in Education (Second Edition). New York : Cambridge University Press, 2003.

MAHER, C., POWELL, A., UPTEGROVE, E. B. Combinatorics and Reasoning: Representing, Justifying and Building Isomorphisms. New York : Springer, 2011.

MAHER, C.,SRAN, M. K., YANKELEWITZ, D. Towers: Schemes, Stategies, and Arguments. In C. Maher, A. Powell, E. B. Uptegrove (Eds.), Combinatorics and Reasoning: Representing, Justifying and Building Isomorphisms. (Vol. Mathematics Education Library, p. 27–43. New York : Springer, 2011.

MAHER, C., YANKELEWITZ, D. Representations as Tools for Building Arguments. In C. Maher, A. Powell, E. B. Uptegrove (Eds.), Combinatorics and Reasoning: Representing, Justifying and Building Isomorphisms. (Vol. Mathematics Education Library, p. 17–25). New York: Springer, 2011.

Minist`ere de l’Éducation du Québec. Programme de formation de l’école québécoise. Enseignement primaire : Gouvernement du Québec, 2001.

PAUL, R., ELDER, L. Critical Thinking. Tools for Taking Charge of you Learning and your Life. Upper Saddle River, NJ : Prentice Hall, 2001.

PIAGET, J. La prise de conscience. Paris : Presses universitaires de France, 1974.

PIAGET, J., INHELDER, B. La gen`ese de l’idée de hasard chez l’enfant, Deuxi`eme édition. Paris : Presses universitaires de France, 1974.

SAVARD, A. Simulating the risk without gambling: Can student conceptions generate critical thinking about probability? Paper presented at the International Conference on Teaching Statistic (ICOTS 8), Ljubljana, Slovenia, 2010, July 5–9.

SCHOLZ, R. W. Psychological Research in Probabilistic Understanding. In R. Kapadia, M. Borovcnik (Eds.), Chance Encount Probability in Education. p. 213–256. Dordrecht : Kluwer academic publishers, 1991.

VERGNAUD, G. La théorie des champs conceptuels. Recherches en didactique des mathématiques, 10(2.3), 1990, 199–170.