Abstract
The purpose of this study was to test the methodology for determining the level of scientific literacy of high school and university students using the Test of Scientific Literacy (TOSLS). 195 third- and fourth-year students from six high schools and 130 students from three Czech universities participated in the study. Descriptive and inductive statistical methods were used for data analysis. It was found that both high school and university students showed good results in skills aimed at evaluating the uses and misuses of scientific information, reading and interpreting graphical representations of the data, and solving problems using quantitative skills, including basic statistics. In contrast, they have difficulty with skills related to identifying strengths and weaknesses in research and understanding and interpreting basic statistics. In determining the levels of the sub-skills that define scientific literacy in the TOSLS, statistical analysis showed that test scores for all sub-skills depend on the group of students tested. The relatively low reliability found in the present study and in other international studies indicates the presence of several tasks that do not distinguish well between lower and higher scorers on the test.
References
AAAS. (1993). Benchmarks for science literacy. Oxford University Press. https://www.aaas.org/resources/benchmarks-science-literacy
Arons, A. B. (1983). Achieving wider scientific literacy. Daedalus, 112(2), 91–122. https://www.jstor.org/stable/20024855
Bao, L., Cai, T., Koenig, K., Fang, K., Han., J., Wang, J., Liu, Q., Ding, L., Cui, L., Luo, Y., Wang, Y., Li, L., & Wu, N. (2009). Learning and scientific reasoning. Science, 323(5914), 586–587. https://doi.org/10.1126/science.1167740
Bauer, M. W., Allum, N., & Miller, S. (2007). What can we learn from 25 years of PUS survey research? Liberating and expanding the agenda. Public Understanding of Science, 16(1), 79–95. https://doi.org/10.1177/0963662506071287
Bennett, J., & Lubben, F. (2006). Context-based chemistry: The Salters approach. International Journal of Science Education, 28(9), 999–1015. https://doi.org/10.1080/09500690600702496
Boudová, S., Tomášek, V., & Halbová, B. (2023). Národní zpráva PISA 2022. ČŠI. https://www.csicr.cz/CSICR/media/Prilohy/2023 p%C5%99%C3%ADlohy/ Mezin%C3%A1rodn%C3%AD%20%C5%A1et%C5%99en%C3%AD/PISA 2022 e-verze-9.pdf
Cihlář, J., Eisenmann, P., Hejnová, E., & Přibyl, J. (2020). Problem solving in mathematics and scientific reasoning. The New Educational Review, 61(3), 97–108. https://doi.org/10.15804/tner.20.61.3.08
Česká školní inspekce. (2017). PISA 2015: Koncepční rámec hodnocení přírodovědné gramotnosti. ČŠI. https://www.csicr.cz/cz/Dokumenty/Publikace-a-ostatni-vystupy/Koncepcni-ramec-hodnoceni-prirodovedne-gramotnosti
Česká školní inspekce. (2024). Tematická zpráva ČŠI, 2023–2024: Přírodovědná gramotnost a přírodovědné vzdělávání na základních a středních školách. ČŠI. https://www.csicr.cz/cz/Dokumenty/Tematicke-zpravy/Tematicka-zprava-%E2%80%93-Prirodovedna-gramotnost-a-priro
Čipková, E., Karolčík, Š., Sládková, K., & Ušáková, K. (2018). What is the level of scientific literacy among geography students studying bachelor’s studies in natural sciences? International Research in Geographical and Environmental Education, 27(4), 295–310. https://doi.org/10.1080/10382046.2017.1389044
Čipková, E., Karolčík, Š., & Scholzová, L. (2019). Are secondary school graduates prepared for the studies of natural sciences? – evaluation and analysis of the result of scientific literacy levels achieved by secondary school graduates. Research in Science & Technological Education, 38(2), 146–167. https://doi.org/10.1080/02635143.2019.1599846
De Boer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582–601. https://doi.org/10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L
Dvořáková, I. (2011). Fyzikální vzdělávání žáků a učitelů v projektu Heuréka [Disertační práce, Univerzita Karlova]. http://kdf.mff.cuni.cz/lide/dvorakova/Disertace.pdf
Gormally, C., Brickman, P., & Lutz, M. (2012). Developing a test of scientific literacy skills (TOSLS): Measuring undergraduates’ evaluation of scientific information and arguments. CBE – Life Sciences Education, 11(4), 364–377. https://doi.org/10.1187/cbe.12-03-0026
Hammer, C., & Dusek, V. (2006). The rationale and challenge for the integration of science studies in the revision of general education curricula. Journal of General Education, 55(1), 1–16. https://doi.org/10.2307/27798034
Hrouzková, T., & Richterek, L. (2022). Vědecké myšlení studentů nastupujících na PřF UP. In R. Holubová (Ed.), Veletrh nápadů učitelů fyziky 27 (s. 89–102). Univerzita Palackého v Olomouci. https://vnuf.upol.cz/vnuf27 sbornik.pdf
Chráska, M. (1999). Didaktické testy. Paido.
Chvál, M., Procházková, I., & Straková, J. (2015). Hodnocení výsledků vzdělávání didaktickými testy. Česká školní inspekce. https://www.csicr.cz/cz/Dokumenty/Publikace-a-ostatni-vystupy/Hodnoceni-vysledku-vzdelavani-didaktickymi-testy
Chvál, M., Šmejkalová, M., & Smetáčková, I. (2020). Od porozumění textu k vyřešení matematické slovní úlohy. Didaktické studie, 1(12), 83–100.
Janoušková, S., Rusek, M., & Žák, V. (2019). Koncept přírodovědné gramotnosti v České republice: analýza a porovnání. Studia paedagogica, 24(3), 93–109. https://doi.org/10.5817/SP2019-3-4
Janoušková, S., Pyskatá Rathouská, L., Žák, V., & Stratilová Urválková, E. (2021). The scientific thinking and reasoning framework and its applicability to manufacturing and services firms in natural sciences. Research in Science & Technological Education, 41(2), 653–674. https://doi.org/10.1080/02635143.2021.1928048
Kline, P. (1993). The handbook of psychological testing. Routledge.
Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education, 77(3), 319–337. https://doi.org/10.1002/sce.3730770306
Lawson, A. E. (2000). The generality of hypothetico-deductive reasoning: making scientific thinking explicit. The American Biology Teacher, 62(7), 482–495. https://doi.org/10.2307/4450956
Lešková, D., Ušáková, K., & Čipková, E. (2016). Zisťovanie úrovne prírodovednej gramotnosti vysokoškolákov využitím metodiky TOSLS. Biológia, ekológia, chémia, 20(3), 33–40. http://bech.truni.sk/prilohy/BECH 3 2016.pdf
Liu, X. (2013). Expanding notions of scientific literacy: A reconceptualization of aims of science education in the knowledge society. In N. Mansour & R. Wegerif (Eds.), Science education for diversity: Theory and practice (Vol. 8, pp. 23–39). Springer. https://doi.org/10.1007/978-94-007-4563-6 2
Maienschein, J. (1998). Scientific Literacy. Science, 281(5379), 917–917. https://www.science.org/doi/10.1126/science.281.5379.917
Nováková, A., Chytrý, V., & Říčan, J. (2018). Vědecké myšlení a metakognitivní monitorování studentů učitelství pro 1. stupeň základní školy. Scientia in educatione, 9(1), 66–80. https://doi.org/10.14712/18047106.1041
NRC (2003). BIO2010: Transforming undergraduate education for future research biologists. National Academies Press. https://doi.org/10.17226/10497
OECD. (2003). The PISA 2003 assessment framework – mathematics, reading, science and problem solving knowledge and skills. PISA, OECD Publishing. https://doi.org/10.1787/9789264101739-en
OECD. (2023). PISA 2025 Science framework (second draft). PISA, OECD Publishing. https://pisa-framework.oecd.org/science-2025/assets/docs/PISA 2025 Science Framework.pdf
Opitz, A., Heene, M., & Fischer, F. (2017). Measuring scientific reasoning – a review of test instruments. Educational Research and Evaluation, 23(3–4), 78–101. https://doi.org/10.1080/13803611.2017.1338586
Osborne, J. (2013). The 21st century challenge for science education: Assessing scientific reasoning. Thinking Skills and Creativity, 10(3), 265–279. https://doi.org/10.1016/j.tsc.2013.07.006
Pitot, L. N., & Balgopal, M. (2021). Science education reform conundrum: An analysis of teacher developed common assessments. School Science and Mathematics, 121(5), 299–309. https://doi.org/10.1111/ssm.12472
MŠMT (2021). Rámcový vzdělávací program pro základní vzdělávání. MŠMT. http://www.nuv.cz/t/rvp-pro-zakladni-vzdelavani
Segarra, V. A., Hughes, N. M., Ackerman, K. M., Grider, M. H., Lyda, T., & Vigueira, P. A. (2018). Student performance on the Test of Scientific Literacy Skills (TOSLS) does not change with assignment of a low-stakes grade. BMC Research Notes, 11(1), 1–5. https://doi.org/10.1186/s13104-018-3545-9
Shaffer, J. F., Ferguson, J., & Denaro, K. (2019). Use of the Test of scientific literacy skills reveals that fundamental literacy is an important contributor to scientific literacy. CBE – Life Sciences Education, 18(3), 1–10. https://doi.org/10.1187/cbe.18-12-0238
Schneegans, S., & Nair-Bedouelle, S. (2021). Scientific literacy: an imperative for a complex world. In S. Schneegans, T. Straza & J. Lewis (Eds.), UNESCO Science Report: the race against time for smarter development (pp. 17–19). UNESCO Publishing. https://unesdoc.unesco.org/ark:/48223/pf0000377448
Soukup, P. (2013). Věcná významnost výsledků a její možnosti měření. Data a výzkum – SDA Info, 7(2), 125–148. https://doi.org/10.13060/23362391.2013.127.2.41
Trnka, J. (2022). Covid nám odhalil vědu, která se dělá. Vesmír, 101(4), 262–264.
Waldo, J. T. (2014). Application of the Test of scientific literacy skills in the assessment of a general education natural science program. The Journal of General Education, 63(1), 1–14. https://doi.org/10.1353/jge.2014.0007
Woods-McConney, A., Oliver, M. C., McConney, Schibeci, A. R., & Maor, D. (2014). Science Engagement and Literacy: A retrospective analysis for students in Canada and Australia. International Journal of Science Education, 36(10), 1588–1608. https://doi.org/10.1080/09500693.2013.871658