Abstract
This article is focused on the possibilities in data processing based on the Likert scale. The article outlines the principles guiding the use of data suitable for this particular scale analysis, and then demonstrates how to work with such data sets. The test uses data generated by Nature relatedness scale which is commonly used for analysing the relationship between test subjects and nature with the use of a quantitative method. The main goal of the article is to describe possible ways how to process and analyze such data through the Likert scale survey. In doing so, it also substantiates the procedure of the data processing with reference to empirical data which provide information about man-nature relationship.References
Anderson, D. (2011). Biology concept cartoons can engage ALL of your students. Presented at the annual meeting of the National Association of Biology Teachers, Anaheim, CA.
Birisci, S., Metin, M. & Karakas., M. (2010). Pre-service elementary teachers’ views on concept cartoons: A sample from Turkey. Middle-East Journal of Scientific Research, 5(2), 91–97.
Dabell, J. (2008). Using concept cartoons. Mathematics Teaching Incorporating Micromath, 209, 34–36.
Held, Ľ., Žoldošová, K., Orolínová, M., Juricová, I. & Kotuľáková, K. (2011). Výskumne ladená koncepcia prírodovedného vzdelávania (IBSE v slovenskom kontexte). Trnava: Typi Universitatis Tyrnaviensis.
Chin, Ch. & Teou., L.-Y. (2010). Formative assessment: Using concept cartoon, pupils’ drawings, and group discussions to tackle children’s ideas about biological inheritance. Journal of Biological Education, 44(3), 108–115.
Ingec, S. K. (2008). Use of concept cartoons as an assessment tool in physics education. US-China Education Review, 5(11), 47–54.
Izgi, U.& Basar, S. (2015). The views of pre-service teachers about the use of concept cartoons in science courses. International Journal of Contemporary Educational Research, 2(2), 61–68.
Kapabinar, F. (2005). Effectiveness of teaching via concept cartoons from the point of view of constructivist approach. Educational Sciences: Theory and Practice, 5(1), 135–146.
Keogh, B., Naylor, S. & Downing, B. (2001). An empirical study of argumentation in primary science, using Concept Cartoons as the stimulus . Paper presented at the 3rd Conference of the European Science Education Research Association Conference,
Thessaloniki, Greece.
Keogh, B. & Naylor, S. (1997). Starting Points for Science. Cheshire: Millgate House Publishers.
Keogh, B. & Naylor, S. (2000). Concept Cartoons in Science Education. Millgate House Publishers.
Keogh, B. & Naylor, S. (2012, april). Concept Cartoons: what have we learnt? Paper presented at the Fibonacci Project European Conference, Inquiry-based science and mathematics education: bridging the gap between education research and practice, Leicester, UK.
Minárechová, M. (2014). Možnosti využitia metódy concept cartoons pri modifikácii predstáv žiakov o prírodných javoch [Dizertačná práca]. Trnava: Pedagogická fakulta TU.
Prince, M. J. & Felder, R. M. (2006). Inductive teaching and learning methods: definitions, comparisons, and research based. Journal of Engineering Education, 95(2), 123–138.
Prokša, M. a kol. (2008). Metodológia pedagogického výskumu a jeho aplikácia v didaktikách prírodných vied. Bratislava: Univerzita Komenského Bratislava.
S¸eng˝ul, S. (2011). Effects of concept cartoons on mathematics self-eï¬cacy of 7th grade students. Educational Sciences: Theory & Practice, 11(4), 2305–2313.
Sexton, M., Gervasoni, A. & Brandenburg, R. (2009). Using a concept cartoon to gain insight into children’s calculation strategies. Australian Primary Mathematics Classroom, 14(4), 24–28.
Švec, Š. a kol. (1998). Metodológia vied o výchove. Bratislava: IRIS. Výskumne ladená koncepcia prírodovedného vzdelávania, nedatované. Dostupný na http://fibonacci.truni.sk/principy
Žoldošová, K. (2010). Implementácia konštruktivistických princípov prírodovedného vzdelávania do školských vzdelávacích programov MŠ a 1. stupňa ZŠ. Prešov: Rokus.