Pupils’ Concepts of the Triangle and the Rectangle at the Beginning of Lower Secondary School
Robová Scied 10(1) 2019 (Čeština)

How to Cite

Robová, J., Moravcová, V., Halas, Z., & Hromadová, J. (2019). Pupils’ Concepts of the Triangle and the Rectangle at the Beginning of Lower Secondary School. Scientia in Educatione, 10(1), 68-89. https://doi.org/10.14712/18047106.1211

Abstract

The article deals with pupils’ understanding of concepts of the triangle and the rectangle at the beginning of lower secondary school. The pupils were administered a test consisting of tasks asking them to decide whether the marked points (external, internal, on the sides, vertices) belonged to a triangle or rectangle, respectively. The assignment also sought to establish how pupils determined the number of common points which a triangle shared with differently positioned lines. A total of 505 pupils attending the 6th grade of lower secondary schools took part in our testing. The individual responses were coded and subjected to statistical analysis. Possible causes of pupils’ responses were subsequently investigated in semi-structured interviews with another 20 pupils. The testing was preceded by an analysis of several textbook series designed for primary schools, which indicate that the pupils’ concept of the triangle and the rectangle tends to evolve from spatial models (cut out of paper) through appropriate geometric shapes (crayon coloured) which are eventually reduced to their bare boundaries, an evolution process which may generate misconceptions of triangles and rectangles on the part of the pupils. We found that approximately only
half of the pupils had an adequate concept of the triangle or rectangle; there were no significant differences between girls and boys. The most common problem was that the pupils reduced the triangle only to its boundary. In conclusion, we draw attention to the possible consequences of this misconception (area-perimeter, understanding polyhedra) and make some recommendations that could lead to correction.

https://doi.org/10.14712/18047106.1211
Robová Scied 10(1) 2019 (Čeština)

References

Blažková, R., Vaňurová, M., Matoušková, K. & Staudková, H. (2012). Matematika pro 3. ročník ZŠ, 2. díl. Praha: Alter.

Budínová, I. (2017). Vytváření představ základních geometrických pojmů u žáků prvního stupně základní školy. Učitel matematiky, 25(2), 65–82.

Budínová, I. (2018). Vytváření představ základních geometrických pojmů u žáků prvního stupně základní školy: trojúhelník a kruh. Učitel matematiky, 26(1), 1–11.

Cihlář, J., Eisenmann, P. & Krátká, M. (2012). Jak žáci a studenti chápou nekonečno? Matematika – fyzika – informatika, 21(6), 321–341.

Clements, D.H. & Battista, M.T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (420–464). New York: Macmillan.

Clements, D.H., Swaminathan, S., Hannibal, M. A. Z. & Sarama, J. (1999). Young children‘ s concepts of shape. Journal for Research in Mathematics Education, 30(2), 192–212. Dostupné z https://psycnet.apa.org/doi/10.2307/749610

Cutugno, P. & Spagnolo, F. (2002). Misconceptions about triangle in elementary school. In A. Rogerson (Ed.), Conference The Mathematics Education into the 21st Century Project (89–93). Italy, Palermo.

Čáp, J. & Mareš, J. (2001). Psychologie pro učitele. Praha: Portál.

Da˘glı, Ü.Y. & Halat, E. (2016). Young children‘ s conceptual understanding of triangle. Euroasia Journal of Mathematics, Science & Technology Education, 12(2), 189–202. Dostupné z https://doi.org/10.12973/eurasia.2016.1398a

Hadamard, J. (2008). Lessons in geometry I: Plane geometry. USA: American Mathematical Society.

Hejný, M. & Kuřina, F. (2009). Dítě, škola a matematika: konstruktivistické přístupy k vyučování. Praha: Portál.

Hershkowitz, R. (1989). Visualization in geometry – Two sides of the coin. Focus on Learning Problems in Mathematics, 11(1), 61–76.

Hilbert, D. (1899). Grundlagen der geometrie. Leipzig: B.G. Teubner.

Chodorová, M. & Juklová, L. (2017). Geometrické pojmy na základní škole. Matematika – fyzika – informatika, 26(4), 261–271.

Jirotková, D. (2010). Cesty ke zkvalitňování výuky geometrie. Praha: PedF UK.

Jirotková, D. & Littler, G. (2003). Student’s concept of infinity in the context of a simple geometrical construct. In N.A. Pateman, B. J. Dougherty, J. Zilliox (Eds.), Proceedings of PME 27, vol. 3 (123–132). Honolulu: University of Hawaii.

Kalhous, Z. & Obst, O., et al. (2009). Školní didaktika. Praha: Portál.

Kupčáková, M. (2017). Geometrické kurikulum na 1. stupni. In K. Sebínová, L. Gerová, P. Voštinár (Eds.), Zborník príspevkov z vedeckej konferencie s medzinárodnou účasťou Primárne matematické vzdelávanie – teória, výskum a prax (76–80). Banská Bystrica: UMB.

Kuřina, F. (1989). Umění vidět v matematice. Praha: SPN.

Ma, H.-L., Lee, D.-C., Lin, S.-H., & Wu, D.-B. (2015). A study of Van Hiele of geometric thinking among 1st through 6th graders. Euroasia Journal of Mathematics, Science & Technology Education, 11(5), 1181–1196. Dostupné z https://doi.org/10.12973/eurasia.2015.1412a

Monaghan, F. (2000). What difference does it make? Children‘ s views of the differences between some quadrilaterals. Educational Studies in Mathematics, 42(2), 179–196. Dostupné z https://doi.org/10.1023/A:1004175020394

MŠMT. (2017). Rámcový vzdělávací program pro základní vzdělávání. Praha.

MŠMT. (2018). Rámcový vzdělávací program pro předškolní vzdělávání. Praha.

Průcha, J., Walterová, E. & Mareš, J. (2009). Pedagogický slovník. Praha: Portál.

Prokopová, M. & Rys, P. (2003). Pojetí bodu a jeho vztahu ke přímce: komparace fylogeneze a ontogeneze. In Sborník 4. konference Matematika v škole dnes a zajtra (s. 5). Ružomberok: PedF, Katolícká univerzita v Ružomberoku.

Rendl, M., Vondrová, N., Hříbková, L., Jirotková, D., Kloboučková, J., Kvasz, L., Páchová, A., Pavelková, I., Smetáčková, I., Tauchmanová, E. & Žalská, J. (2013). Kritická místa matematiky na základní škole očima učitelů. Praha: UK, PedF.

Servít, F. (1907). Eukleidovy Základy. Praha: JČM.

Škoda, J. & Doulík, P. (2011). Psychodidaktika. Praha: Grada Publishing.

Tall, D. & Vinner, D. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169.

Tirosh, D., Tsamir, P., Tabach, M., Levenson, E. & Barkai, R. (2011). Geometrical knowledge and geometrical self-efficacy among abused and neglected kindergarten children. Scientia in educatione, 2(1), 23–36.

van Hiele, P.M. (1986). Structure and insight: A theory of mathematics education. Orlando: Academic Press.

Vighi, P. (2004). The triangle as a mathematical object. In M. A. Mariotti (Ed.), Proceedings of the Third Conference of the European Society for Research in Mathematics Education, 2003. Bellaria: Italy, University of Pisa and ERME.