Abstract
The study focuses on investigating pedagogical content knowledge in mathematics in the context of future elementary school teachers’ education. The primary strategy explored in this study is the use of a teaching tool called “concept cartoons”. The first part of the contribution gives an overview of the relevant research, while the second part describes our own empirical research and a preparatory study. The preparatory study focused on the ways in which concept cartoons could be used as a tool for investigating pedagogical content knowledge. The research itself focused on the investigation of pedagogical content knowledge of future primary elementary school teachers. The participants of our research were students of the second year of a five-year master degree university programme for future elementary school teachers who had not yet attended the respective mathematics education college course. We focused on assessing their knowledge in the field of number systems. The results of the research have confirmed that some future teachers are able to acquire some expertise in pedagogical content knowledge in non-formal settings, during their attendance of K-12or non-didactic university courses. The data analysis revealed the several participants had good knowledge of the relevant tasks and pupils’ misconceptions. Some participants, however, were unable to distinguish between the act of identifying a mistake and the ability to identify the cause and potential remedy of a mistake. They also had unrealistic expectations about pupils’ levels of reasoning. General results of the research are demonstrated by sample data segments.
References
Ball, D. L., Lubienski, S. T. & Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of research on teaching (433–456). New York: Macmillan.
Bana, J., Farrell, B. & McIntosh, A. (1995). Error patterns in mental computation in years 3–9. In B. Atweh & S. Flavel (Eds.), Galtha: Conference Proceedings of the 18th Annual Conference of MERGA (51–56). Darwin: MERGA.
Berg, E. van den. (2013). Didaktická znalost obsahu v laboratorní výuce: Od práce s přístroji k práci s myšlenkami. Scientia in educatione, 4(2), 74–92.
Berg, E. van den. (2014). Learning to investigate with concept cartoons. In V. Koudelková & L. Dvořák (Eds.), Dílny Heuréky 2013 (7–13). Praha: Nakladatelství P3K.
Centrum pro zjišťování výsledků vzdělávání (2015). Matematika – Didaktický test MAMZD15C0T04. Dostupné
z http://www.novamaturita.cz/zadani-pisemnych-zkousek-podzim-2015-1404037935.html
Dabell, J. (2008). Using Concept Cartoons. Mathematics Teaching, 209, 34–36.
Dabell, J., Keogh, B. & Naylor, S. (2008). Concept Cartoons in Mathematics Education. Sandbach: Millgate House Education.
Department for Education (2010). Teaching children to calculate mentally. STEM learning resources. Dostupné z http://stem.org.uk
Depaepe, F., Torbeyns, J., Vermeersch, N., Janssens, D., Janssen, R., Kelchtermans, G., Verschaffel, L. & Van Dooren, W. (2015). Teachers’ content and pedagogical content knowledge on rational numbers: a comparison of prospective elementary and lower secondary school teachers. Teaching and Teacher Education, 47, 82–92.
Depaepe, F., Verschaffel, L. & Kelchtermans, G. (2013). Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher Education, 34, 12–25.
Friesen, M. & Kuntze, S. (2016, srpen). Teacher students analyse texts, comics and video-based classroom vignettes regarding the use of representations — Does format matter? Příspěvek přednesený na mezinárodní konferenci PME, Szeged, Maďarsko.
Fronek, J. (1999). Anglicko-český, česko-anglický slovník. Praha: LEDA.
Gavora, P. (2010). Úvod do pedagogického výzkumu. Brno: Paido.
Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. New York: Teachers College Press.
Hansen, A. (Ed.) (2011). Children’ errors in mathematics. Understanding common misconceptions in primary schools. London: SAGE.
Hejnová, E. (2013, duben). Konceptuální úlohy pro aktivní učení na základní škole. Příspěvek prezentovaný na konferenci Moderní trendy v přípravě učitelů fyziky 6, Kašperské Hory.
Hejný, M. & Stehlíková, N. (1999). Zkoumání číselných představ dítěte a žáka. Pokroky matematiky, fyziky a astronomie, 44(2), 148–167.
Herbst, P., Aaron, W. & Erickson, A. (2013). How preservice teachers respond to representations of practice: A comparison of animations and video. Příspěvek přednesený na konferenci AERA, San Francisco, USA.
Herbst, P. & Kosko, K.W. (2013). Using representations of practice to elicit mathematics teachers’ tacit knowledge of practice: a comparison of responses to animations and videos. Journal of Mathematics Teacher Education, 17(6), 515–537.
Hošpesová, A. (2003). Procesuální a pojmové myšlení ve vytváření aditivní poznatkové struktury. [Habilitační práce]. Olomouc: Univerzita Palackého, Pedagogická fakulta.
Janík, T. (2004). Význam Shulmanovy teorie pedagogických znalostí pro oborové didaktiky a pro vzdělávání učitelů. Pedagogika, 54(3), 243–250.
Janík, T. et al. (2007). Pedagogical content knowledge nebo didaktická znalost obsahu? Brno: Paido.
Janík, T. (2009). Didaktické znalosti obsahu a jejich význam pro oborové didaktiky, tvorbu kurikula a učitelské vzdělávání. Brno: Paido.
Keogh, B. & Naylor, S. (1993). Learning in science: another way in. Primary Science Review, 26, 22–23.
Keogh, B. & Naylor, S. (1999). Concept cartoons, teaching and learning in science: an evaluation. International Journal of Science Education, 21(4), 431–446.
Keogh, B., Naylor, S., Boo, M. de & Feasey, R. (1999). The use of concept cartoons as an auditing tool in initial teacher training. Příspěvek prezentovaný na konferenci ESERA, Kiel, Německo.
Kittler, J. (1994). Matematika pro 1. ročník základní školy, učebnice. Praha: Matematický ústav AV ČR.
Kleickmann, T., Richter, D., Kunter, M., Elsner, J., Besser, M., Krauss, S. & Baumert, J. (2013). Teachers’ content and pedagogical content knowledge: the role of structural differences in teacher education. Journal of Teacher Education, 64, 90–106.
Kořínek, M. (1965). K otázce spojů v nižších ročnících ZDŠ. Pedagogika, 15(6), 691–705.
Krauss, S., Baumert, J. & Blum, W. (2008). Secondary mathematics teachers’ pedagogical content knowledge and content knowledge: validation of the COACTIV constructs. ZDM Mathematics Education, 40, 8873–8892.
Krauss, S. & Brunner, M. (2008). Professionelles Reagieren auf Schülerantworten: Ein Reaktionszeittest für Mathematiklehrkräfte. In E. Vásárhelyi (Ed.), Beiträge zum Mathematikunterricht 2008. Vorträge auf der 42. Tagung für Didaktik der Mathematik vom 13. 3. bis 18. 3. 2007 in Budapest. (400–403). Münster: WTM-Verlag.
Kuřina, F. (2011). Tři pokusy řešit neřešitelné. Pedagogika, 61(1), 5–12.
Kuřina, F. (2012). Didaktické znalosti obsahu a matematické vzdělávání učitelů. Pedagogická orientace, 22(2), 162–180.
Minárechová, M. (2014). Využitie metódy concept cartoons pri modifikácii žiackych predstáv o prírodných javoch. PEDAGOGIKA.SK, 5(2), 137–159.
Naylor, S. & Keogh, B. (2007). Active assessment: thinking, learning and assessment in science. School Science Review, 88(325), 73–79.
Naylor, S. & Keogh, B. (2010). Concept Cartoons in Science Education, 2nd Edition. Sandbach: Millgate House Education.
Naylor, S. & Keogh, B. (2013). Concept Cartoons: What have we learnt? Journal of Turkish Science Education, 10(1), 3–11.
Naylor, S., Keogh, B. & Downing, B. (2007). Argumentation and primary science. Research in Science Education, 37, 17–39.
Pankow, L., Kaiser, G., Busse, A., König, J., Blömeke, S., Hoth, J. & Döhrmann, M. (2016). Early career teachers’ ability to focus on typical students errors in relation to the complexity of mathematical topic. ZDM, 48(1–2), 55–67.
Rowland, T., Huckstep, P. & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: the knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8, 255–281.
Rowland, T., Thwaites, A. & Jared, L. (2016). Analysing secondary mathematics teaching with the knowledge quartet. Příspěvek přednesený na mezinárodní konferenci ICME-13, Hamburg, Německo.
Rowland, T., Turner, F., Thwaites, A. & Huckstep, P. (2009). Developing primary mathematics teaching. Reflecting on practice with the knowledge quartet. London: SAGE.
Rowland, T., Turner, F. & Thwaites, A. (2014). Research into teacher knowledge: a stimulus for development in mathematics teacher education practice. ZDM Mathematics Education, 46, 317–328.
Ryan, J. & Williams, J. (2011). Children’s mathematics 4–15. Learning from errors and misconceptions. Berkshire: Open University Press.
Řídká, E. et al. (2015, září). Současný stav maturit z matematiky. Příspěvek na LXIV. Akademickém Fóru Odborné skupiny Organizace výzkumu České fyzikální společnosti JČMF, Praha.
Samková, L. & Hošpesová, A. (2015). Using Concept Cartoons to investigate future teachers’ knowledge. In K. Krainer & N. Vondrová (Eds.), Proceedings of CERME 9 (3241–3247). Praha: Univerzita Karlova, Pedagogická fakulta.
Samková, L. & Tichá, M. (2015). Investigating future primary teachers’ grasping of situations related to unequal partition word problems. In C. Sabena & B. Di Paola (Eds.), Quaderni di Ricerca in Didattica (Mathematics), n. 25, Supplemento n. 2.
Proceedings CIEAEM 67, Teaching and learning mathematics: resources and obstacles (295–303). Palermo, Italy: G.R.I.M.
Samková, L., Tichá, M. & Hošpesová, A. (2015). Error patterns in computation in Concept Cartoons. In J. Novotná & H. Moraová (Eds.), International Symposium Elementary Maths Teaching SEMT ’15. Proceedings (390–391). Praha: Univerzita
Karlova, Pedagogická fakulta.
Scio (2008). Testy z víceletých gymnázií 2009 – matematika. Brno:Didaktis.
Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
Shulman, L.S. (1987). Knowledge and teaching. Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.
Stehlíková, N. (2010). Interpretace některých didakticko-matematických jevů u studentů učitelství a u učitelů matematiky. Pedagogika, 60(3–4), 303–313.
Švaříček, R. & Šeďová, K. (2014). Kvalitativní výzkum v pedagogických vědách. Praha: Portál.
Tichá, M. & Macháčková, J. (2006). Rozvoj pojmu zlomek ve vyučování matematice. In Podíl učitele matematiky ZŠ na tvorbě ŠVP: Studijní materiály k projektu. Praha: JČMF. [CD-ROM]
Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: the case of division of fractions.
Journal for Research in Mathematics Education, 31, 5–25.
Trnová, E., Janko, T., Trna, J. & Pešková, K. (2016). Typy vzdělávacích komiksů a analýza jejich edukačního potenciálu pro přírodovědnou výuku. Scientia in educatione, 7(1), 49–64.
Turnuklu, E. B. & Yesildere, S. (2007). The pedagogical content knowledge in mathematics: pre-service primary mathematics teachers’ perspectives in Turkey. Issues in the Undergraduate Mathematics Preparation of School Teachers, 1, 1–13.
Vondrová, N. & Žalská, J. (2015). Ability to notice mathematics specific phenomena: What exactly do student teachers attend to? Orbis Scholae, 9(2), 77–101.