Abstrakt
Výzkum popsaný v tomto článku je zaměřen na analýzu závislosti úrovně vědeckého myšlení a metakognitivního monitorováním studentů učitelství pro 1. stupeň ZŠ. Hlavní dikce je směřována k využití Lawsonova testu vědeckého myšlení rozšířeného o sebeposuzovací škály, které lze využít jako indikátor metakognitivního monitorování. Na základě výsledků daného testu v porovnání s odpověďmi na zmíněné škále byl vyhodnocen a analyzován index absolutní přesnosti (určuje míru přesnosti subjektivního odhadu výkonu v porovnání s objektivně prokázaným výkonem) a bias index (určuje míru jedincova sebepodceňování nebo sebenadhodnocování, tedy směr a velikost chyby v úsudku). Bylo analyzováno celkem 125 testů studentů učitelství s cílem zjistit vztah mezi výsledky v testu měřícího úroveň vědeckého myšlení a úrovní metakognitivního monitorování. Bylo zjištěno, že úroveň vědeckého myšlení studentů vykazuje v některých oblastech silnou korelaci se sebehodnocením respondenta (čím lepší byl výsledek jejich testu vědeckého myšlení, tím přesnější byli studenti v posouzení vlastního výkonu). V rámci studie byl také zaznamenán rozdíl v úrovni vědeckého myšlení mezi bývalými studenty gymnázia, kteří dosahovali v testu vyšších výsledků oproti studentům, kteří studovali jinou střední školu. U všech analyzovaných studentů se projevila tendence nadhodnocovat se, přičemž tento trend nesouvisí s druhem studované školy.Reference
Bandura, A. & Schunk, D.H. (1981). Cultivating competence, self-efficacy, and intrinsic interest through proximal self-motivation. Journal of Personality and Social Psychology, 41(3), 586–598.
Benford, R. & Lawson, A.E. (2001). Relationships between effective inquiry use and the development of scientific reasoning skills in college biology labs. Arlington, VA: National Science Foundation
Bao, L., Cai, T., Koenig, K., Fang, K., Han, J., Wang, J., Wang, Y. et al. (2009a). Learning and scientific reasoning. Science, 323(5914), 586–587.
Bao, L., Fang, K., Cai, T., Wang, J., Yang, L., Cui, L., Luo, Y. et al. (2009b). Learning of content knowledge and development of scientific reasoning ability: A cross culture comparison. American Journal of Physics, 77(12), 1118–1123.
Bao, L. & Koenig, K. (2012). TI21: A technology enhanced inquiry framework for developing and assessing 21st century skills. Dostupné z http://www.istarassessment.org/ti21/
Beneš, P. (1999). Reálné modelové experimenty ve výuce chemie. Praha: UK PedF.
Beneš, P., Rusek, M. & Kudrna, T. (2015). Tradice a současný stav pomůckového zabezpečení edukačního chemického experimentu v České republice. Chemické Listy, 109(2), 159–162.
Blažek, R. & Příhodová, S. (2016). Mezinárodní šetření PISA 2015: národní zpráva: přírodovědná gramotnost. Praha: Česká školní inspekce.
Bol, L. & Hacker, D. J. (2012, June 19). Calibration research: Where do we go from here? Dostupné z http://journal.frontiersin.org/article/10.3389/fpsyg.2012.00229/full
Coletta, V.P. & Phillips, J. A. (2005). Interpreting FCI scores: Normalized gain, preinstruction scores, and scientific reasoning ability. American Journal of Physics, 73(12), 1172–1182.
Cronbach, L. J. (1951). Coefficient Alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.
Dejonckheere, P. J., Van De Keere, K. & Mestdagh, N. (2009). Training the scientific thinking circle in pre-and primary school children. The Journal of Educational Research, 103(1), 1–16.
Ding, L. (2013). Detecting progression of scientific reasoning among university science and engineering students. In Physics Education Research Conference 2013 (pp. 125–128). Portland, OR: AAPT.
Dunning, D., Johnson, K., Ehrlinger, J. & Kruger, J. (2003). Why people fail to recognize their own incompetence. Current Directions in Psychological Science, 12, 83–87.
Dykstra Jr, D. I. (2011). Výuka fyziky a rozvoj myšlení. Scientia in educatione, 2(2), 59–75.
Gerber, B. L., Cavallo, A.M. & Marek, E. A. (2001). Relationships among informal learning environments, teaching procedures and scientific reasoning ability. International Journal of Science Education, 23(5), 535–549.
Gilbert, J. (2005) Catching the knowledge wave: the knowledge society and the future of education. Wellington, New Zealand: NZCER Press.
Hacker, D. J., Bol, L., Horgan, D.D. & Rakow, E. A. (2000). Test prediction and performance in a classroom context. Journal of Educational Psychology, 92(1), 160–170.
Hejnová, E. & Hejna, D. (2016). Rozvoj vědeckého myšlení žáků prostřednictvím přírodovědného vzdělávání. Scientia in educatione, 7(2), 2–17.
Hendl, J. (2012). Přehled statistických metod. Praha: Portál.
Holyoak, K. J. & Morrison, R. G. (Eds.) (2005). The Cambridge handbook of thinking and reasoning. Cambridge University Press.
Hilton, M. (2008). Skills for work in the 21st century: what does the research tell us? The Academy of Management Perspectives, 22(4), 63–78.
Chytrý, V. (2015) Logika, hry a myšlení. 1. vyd. Ústí nad Labem: Univerzita J. E. Purkyně v Ústí nad Labem.
Chytrý, V., Pešout, O. & Říčan, J. (2014). Preference metakognitivních strategií na pozadí úkolových situací v matematice u žáků druhého stupně ZŠ. Ústí nad Labem: Univerzita J. E. Purkyně v Ústí nad Labem.
Jang, H. (2016). Identifying 21st century STEM competencies using workplace data. Journal of Science Education and Technology, 25(2), 284–301.
Janoušková, S., Hubáčková, L., Pumpr, V. & Maršák, J. (2014). Přírodovědná gramotnost v preprimárním a raném období primárního vzdělávání jako prostředek zvýšení zájmu o studium přírodovědných a technických oborů. Scientia in educatione, 5(1), 36–49.
Kruger, J. & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77(6), 1121–1134.
Kuhn, D. (2010). What is scientific thinking and how does it develop?. In U. Goswami (Ed.), The Wiley-Blackwell Handbook of Childhood Cognitive Development (2nd ed.) (pp. 497–523). Oxford: Wiley-Blackwell.
Kuhn, D. & Franklin, S. (2006). The second decade: What develops (and how). John Wiley & Sons, Inc.
Kuhn, D. & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of cognition and Development, 1(1), 113–129.
Lawson, A. E. (1995). Science teaching and the development of thinking. Belmont, CA: Wadsworth Publishing Company.
Lawson, A. E. (2000). Classroom test of scientific reasoning: Multiple choice version. Dostupné z http://www.public.asu.edu/â¼anton1/AssessArticles/Assessments/Mathematics%20Assessments/Scientific%20Reasoning%20Test.pdf
Linn, M.C., Davis, E.A. & Bell, P. (2004). Internet environments for science education. Lawrence Erlbaum Associates, Inc., Publishers, Mahwah, New Jersey, USA.
Maki, R.H., Shields, M., Wheeler, A.E. & Zacchilli, T. L. (2005). Individual differences in absolute and relative metacomprehension accuracy. Journal of Educational Psychology, 97, 723–731.
Moore, N., O’Donnell, J. & Poirier, D. (2012). Using cognitive acceleration materials to develop pre-service teachers’ reasoning and pedagogical expertise. Advancing the STEM Agenda in Education, University of Wisconsin.
Moore, J.C. & Rubbo, L. J. (2012). Scientific reasoning abilities of nonscience majors in physics-based courses. Physical Review Special Topics-Physics Education Research, 8(1), 010106.
McGartland Rubio, D. (2005). Alpha reliability. In K. Kempf-Leonard (Ed.), Encyclopedia of social measurement (59–63). Elsveir.
Neuenhaus, N. (2011). Metakognition und leistung: Eine längsschnittuntersuchung in den bereichen lesen und Englisch bei schülerinnen und schülern der fünften und sechsten jahrgangsstufe [Doctoral dissertation]. Universität Otto-Friedrich, Bamberg, Germany.
Retrieved from http://opus4.kobv.de/opus4/bamberg/frontdoor/deliver/index/docId/ 327/file/DissNeuenhausseA2.pdf
Nietfeld, J. L., Cao, L.& Osborne, J.W. (2005). Metacognitive monitoring accuracy and student performance in the postsecondary classroom. The Journal of Experimental Educational, 74, 7–28.
Osborne, J. (2013). The 21st century challenge for science education: Assessing scientific reasoning. Thinking Skills and Creativity, 10, 265–279.
Osborne, J. & Ratcliffe, M. (2002). Developing effective methods of assessing ideas and evidence. School Science Review, 83(305), 113–123.
Prins, F. J., Veenman, M.V. J. & Elshout, J. J. (2006). The impact of interllectual ability and metacognition on learning: New support for the threshold of problematicity theory. Learning and Instruction, 16, 374–387.
Říčan, J. (2016). Metakognice a metakognitivní strategie jako teoretické a výzkumné konstrukty a jejich uplatnění v moderní pedagogické praxi. Most: Hněvín.
Schraw, G. (1998). Promoting general metacognitive awereness. Instructional science, 26(1–2), 113–125.
Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101.
Tavakol, M. & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2011(2), 53–55.
Trna, J. (2013). Fyzika: Záhadná setrvačnost těles v jednoduchých experimentech. In T. Janík, J. Slavík, V. Mužík, J. Trna, T. Janko, V. Lokajíčková, J. Lukavský,E. Minaříková, Z. Šalamounová, E. Šebestová, N. Vondrová & P. Zlatníček (Eds.),
Kvalita (ve) vzdělávání: obsahově zaměřený přístup ke zkoumání a zlepšování výuky (284–293). Brno: Masarykova Univerzita.
Tomášek, V., Basl, J. & Janoušková, S. (2016). Mezinárodní šetření TIMSS 2015: Národní zpráva. Prague, Czechia: Česká školní inspekce. Retrieved from www.csicr.cz/html/timss/html5/index.html?&locale=CSY&pn=3
Windschitl, M. (2004). Folk theories of “inquiry”: How preservice teachers reproduce the discourse and practices of an atheoretical scientific method. Journal of research in science teaching, 41(5), 481–512.
Winne, P.H. & Hadwin, A. (1998). Studying as selfregulated learning. In D. J. Hacker, J. Dunlosky & A.C. Graesser (Eds.), Metacognition in educational theory and practice (277–304). Mahwah, NJ: Erlbaum.
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27, 172–223.