Translational music education

Authors

  • prof. Dr. Dr. Dr. Wolfgang Mastnak University of Music and Performing Arts

DOI:

https://doi.org/10.14712/25337890.4844

Keywords:

complexity sciences, diversity and inclusion, iinterdisciplinary education, neurosciences, philosophy of science

Abstract

Learning music belongs to the core tasks of music education, alongside psycho-affective responses, cognitive understanding, aesthetic immersion and creative activities. While all these performances are inextricably intertwined with central-nervous processes, music educational theories and models are markedly lacking neuroscientific substantiation. Regardless of these shortcomings, a wealth of studies on neuro-cognitive music processing may profoundly elucidate music educational topics, hence the idea to bridge the gap between music-neuro-lab outcomes and music educational practice. Regarding that about 30 years ago translational medicine was designed to improve the application of lab-derived results in clinical practise – shortly ‘bench-to-bedside’ – the novel term ‘translational music education’ was coined. Integrating music-related psycho-biological findings gives rise to epistemological meta-syntheses and theoretical frameworks, alongside comparative research on system compatibility between music educational models and relevant lab-data of music processing. This helps to improve the scientific reliability of music educational theories and highlights distinct benefits of music education such as music as a powerful booster of neuroplasticity, which is the basis of all learning and developmental processes. Distinct interdisciplinary and international research collaboration is needed to promote translational music education, which is expected to increase the recognition of music education within the multifaceted world of sciences, alongside significant improvements of teaching techniques.

References

Allesch, C., & Schwarzbauer, M. (2009). Polyaesthetic Education: A model for integrating cultural experiences. In: J. N. Erzen (Ed.) Congress Book II. Selected Papers XVIIth International Congress of Aesthetics, 19-27. Sanart.

Alt, M. (1968). Didaktik der Musik. Orientierung am Kunstwerk. Düsseldorf: Pädagogischer Verlag Schwann.

Artıktay, G.G. (2024). Cognitive neuroscience and music education: Relationshipsand interactions. International Journal of Educational Spectrum, 6(1), 91-119. doi: 10.47806/ijesacademic.1402953.

Baxi, V., Edwards, R., Montalto, M. & Saha, S. (2022). Digital pathology and artificial intelligence in translational medicine and clinical practice. Modern Pathology, 35(1), 23-32. doi: 10.1038/s41379-021-00919-2.

Beaty, R.E. (2015). The neuroscience of musical improvisation. Neuroscience and Biobehavioral Reviews, 51, 108-117. doi: 10.1016/j.neubiorev.2015.01.004.

Beccacece, L., Abondio, P., Cilli, E., Restani, D. & Luiselli, D. (2021). Human Genomics and the Biocultural Origin of Music. International Journal of Molecular Sciences, 22(10), 5397. doi: 10.3390/ijms22105397.

Boler, V. (2020). Three philosophies of music education. https://victoriaboler.com/blog/three-philosophies-of-music-education

Bravo, F., Cross, I., Hopkins, C., Gonzalez, N., Docampo, J., Bruno, C. & Stamatakis, E.A. (2020). Anterior cingulate and medial prefrontal cortex response to systematically controlled tonal dissonance during passive music listening. Human Brain Mapping, 41(1), 46-66. doi: 10.1002/hbm.24786.

Cheung, V.K.M., Meyer, L., Friederici, A.D. & Koelsch, S. (2018). The right inferior frontal gyrus processes nested non-local dependencies in music. Scientific Reports, 8, 3822. doi: 10.1038/s41598-018-22144-9.

Chorna, O., Filippa, M., De Almeida, J.S., Lordier, L., Monaci, M.G., ... & Guzzetta, A. (2019). Neuroprocessing Mechanisms of Music during Fetal and Neonatal Development: A Role in Neuroplasticity and Neurodevelopment. Neural Plasticity, 2019, 3972918. doi: 10.1155/2019/3972918.

Collins, A. (2013). Neuroscience meets music education: Exploring the implications of neural processing models on music education practice. International Journal of Music Education, 31(2), 217-231. doi: 10.1177/0255761413483081.

Demorest, S.M., Morrison, S.J., Stambaugh, L.A., Beken, M., Richards, T.L. & Johnson, C. (2010). An fMRI investigation of the cultural specificity of music memory. Social Cognitive and Affective Neuroscience, 5(2-3), 282-291. doi: 10.1093/scan/nsp048.

Fédération Internationale des Enseignements de Rhythmique (2019). Le Rhythme 2019 – Scientific Perspectives / Artistic Research, Genève.

Fredriksson, K., Zandén, O. & Wallerstedt, C. (2024). Teaching and learning in music education – a meta-synthesis. Music Education Research, 26(2), 193–204. doi: 10.1080/14613808.2024.2319579.

Gallazzi, M., Pizzolante, M., Biganzoli, E.M. & Bollati, V. (2024). Wonder symphony: epigenetics and the enchantment of the arts. Environmental Epigenetics, 10(1), dvae001. doi: 10.1093/eep/dvae001.

Iigaya, K., O'Doherty, J.P. & Starr G.G. (2020). Progress and Promise in Neuroaesthetics. Neuron, 108(4), 594-596. doi: 10.1016/j.neuron.2020.10.022.

Ji, C., Zhao, J., Nie, Q. & Wang, S. (2024). The role and outcomes of music therapy during pregnancy: a systematic review of randomized controlled trials. Journal of Psychosomatic Obstetrics and Gynaecology, 45(1), 2291635. doi: 10.1080/0167482X.2023.2291635.

Johnson, M.W. (2024). Music, cells and the dimensionality of nature. Progress in Biophysics and Molecular Biology, 186, 57-64. doi: 10.1016/j.pbiomolbio.2023.11.006.

Jorgensen, E. R. & and Yob, I.M. (2023). Editorial Reflections on Philosophizing in Music Education. Philosophy of Music Education Review, 31(2), 109-120. doi: 10.2979/pme.2023.a909305.

Kalcher, A.M. (Ed.) (2022). Orff im Wandel der Zeit – Kunst trifft Pädagogik. Wiesbaden: Reichert Verlag.

Li, C.W., Guo, F.Y. & Tsai, C.G. (2021). Predictive processing, cognitive control, and tonality stability of music: An fMRI study of chromatic harmony. Brain and Cognition, 151, 105751. doi: 10.1016/j.bandc.2021.105751.

Lienau, E.K. & DeSalle, R. (2009). Evidence, content and corroboration and the Tree of Life. Acta Biotheoretica, 57(1-2), 187-199. doi: 10.1007/s10441-008-9066-5.

Mastnak, W. (2018). Creativity. Neuropsychological conditions, music educational perspectives, and health related benefits. Musik-, Tanz- und Kunsttherapie (Pabst Science Publishers), 28(1), 54-62. doi: 10.13140/RG.2.2.30675.86560.

Mastnak, W. (2020). Ontologische Musikpädagogik. Diskussion Musikpädagogik, 88(4), 44-52.

Mastnak, W. (2021a). Coherence Size and Confidence Range: Two new Parameters? ResearchGate. doi: 10.13140/RG.2.2.32833.28007.

Mastnak, W. (2021b). Systemic Meta-Synthesis. ResearchGate. doi: 10.13140/RG.2.2.25103.30886.

Merrett, D.L., Peretz, I. & Wilson, S.J. (2013). Moderating variables of music training-induced neuroplasticity: a review and discussion. Frontiers in Psychology, 4, 606. doi: 10.3389/fpsyg.2013.00606.

Nair, P.S., Raijas, P., Ahvenainen, M., Philips, A.K., Ukkola-Vuoti, L. & Järvelä, I. (2021). Music-listening regulates human microRNA expression. Epigenetics, 16(5), 554-566. doi: 10.1080/15592294.2020.1809853.

Nussbaum, C.O. (2007). The Musical Representation: Meaning, Ontology, and Emotion. Cambridge, MA: MIT Press.

Ortlieb, S.A., Kügel, W.A. & Carbon, C.C. (2020). Fechner (1866): The Aesthetic Association Principle—A Commented Translation. I-Perception, 11(3). doi: 10.1177/2041669520920309

Popper, K.R. (1972). Objective Knowledge: An Evolutionary Approach. Oxford: Clarendon.

Popper, K.R. (2002). The logic of scientific discovery [1st publication, 1935, last modified, 1980]. London: Routledge Classics.

Richter, Ch. (1994). Zum Umgang mit Musikwerken. Geschichte und Weiterentwicklung der didaktischen Interpretation von Musik. In: H. Gembris, R.D. Kraemer & G. Maas (Eds.) Musikpädagogische Forschungsberichte 1993, 41-70. Augsburg: Wißner.

Sachs, M., Habibi, A. & Damasio, H. (2018). Reflections on music, affect, and sociality. Progress in Brain Research, 237, 153-172. doi: 10.1016/bs.pbr.2018.03.009.

Sakai, K.L., Oshiba, Y., Horisawa, R., Miyamae, T. & Hayano, R. (2022). Music-experience-related and musical-error-dependent activations in the brain. Cerebral Cortex, 32(19), 4229-4242. doi: 10.1093/cercor/bhab478.

Sánchez-Dorado, J. (2023). Creativity, pursuit and epistemic tradition. Studies in History and Philosophy of Science, 100, 81-89. doi: 10.1016/j.shpsa.2023.05.003.

Speranza, L., Pulcrano, S., Perrone-Capano, C., di Porzio, U. & Volpicelli, F. (2022). Music affects functional brain connectivity and is effective in the treatment of neurological disorders. Reviews in the Neurosciences, 33(7), 789-801. doi: 10.1515/revneuro-2021-0135.

Sturmberg, J.P. & Martin, C.M. (2022). Complexity sciences: Applied philosophy to solve real-world wicked problems. Journal of Evaluation in Clinical Practice, 28(6), 1169-1172. doi: 10.1111/jep.13781.

Teixeira-Machado, L., Arida, R.M. & de Jesus Mari, J. (2019). Dance for neuroplasticity: A descriptive systematic review. Neuroscience and Biobehavioral Reviews, 96, 232-240. doi: 10.1016/j.neubiorev.2018.12.010.

Vamvacas, C.J. (2009). The Founders of Western Thought – The Presocratics. Berlin: Springer Science & Business Media.

Venus, D. (1969). Unterweisung im Musikhören. Wilhelmshaven: Heinrichshofen.

Wan, C.Y. & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. The Neuroscientist, 16(5), 566-577. doi: 10.1177/1073858410377805.

Wesseldijk, L.W., Ullén, F. & Mosing, M.A. (2023). Music and Genetics. Neuroscience and Biobehavioral Reviews, 152, 105302. doi: 10.1016/j.neubiorev.2023.105302.

Worboys, M., Timmermann, C. & Toon, E. (2021). Before translational medicine: laboratory-clinic relations. History and Philosophy of the Life Sciences, 43(2), 48. doi: 10.1007/s40656-021-00379-6.

Zwir, I., Del-Val, C., Hintsanen, M., Cloninger, K.M., Romero-Zaliz, R., ... & Cloninger, C.R. (2022). Evolution of genetic networks for human creativity. Molecular Psychiatry, 27(1), 354-376. doi: 10.1038/s41380-021-01097-y

Published

2025-04-19